

Available online at www.sciencedirect.com

Tetrahedron 60 (2004) 203-210

Tetrahedron

PPh₃/DDQ as a neutral system for the facile preparation of diethyl α-bromo, α-iodo and α-azidophosphonates from diethyl α-hydroxyphosphonates

Habib Firouzabadi,* Nasser Iranpoor* and Sara Sobhani

Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran

Received 5 May 2003; revised 22 September 2003; accepted 16 October 2003

Abstract—The mixture of triphenylphosphine (PPh₃) and 2,3-dichloro-5,6-dicyanobenzquinone (DDQ) as a neutral system has been used for the preparation of various types of diethyl α -bromo, α -iodo and α -azidophosphonates from their corresponding diethyl α -hydroxyphosphonates in the presence of *n*-Bu₄NBr, *n*-Bu₄NI and NaN₃ in good to high yields. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

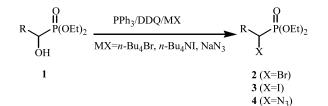
α-Functionalized phosphonates are fascinating organophosphorus compounds in biology, pharmacology and organic chemistry.¹ The main interest in the preparation of these compounds arises from their common applications in the Horner-Wadsworth-Emmons (HWE) olefination reaction to produce α -functionalized olefins and acetylenes.² α -Hydroxyphosphonates,³ which are easily prepared from commercially available materials, are useful precursors for the preparation of various types of α -functionalized phosphonates. Although a wide range of procedures exists in the literature for the conversion of ordinary hydroxyl functional groups into other functional groups, these methods are not readily applicable to α -hydroxyphosphonates.⁴ Therefore, introduction of new and suitable methods for the preparation of α -functionalized phosphonates by the replacement of hydroxyl functional groups has received wide spread attention from organic chemists.^{3a,5}

Preparation of biologically active diethyl α -halogenated phosphonates, which are also good precursors for the preparation of heavily substituted olefines via HWE olefination reaction, is an interesting reaction in organic chemistry.^{1g,2a,d-g} A literature survey indicates that in contrast to the existing methods for the conversion of alcohols to their bromides and iodides, few methods are known for the preparation of diethyl α -bromo and α -iodophosphonates from their corresponding diethyl α -hydroxyphosphonates.⁶ However, the reported procedures suffered from at least one of the following

drawbacks; such as low yields of the products, use of toxic reagents or requiring rather high temperatures. PPh₃/ CBr₄ in refluxing benzene and PPh₃/Br₂/Py in CH₃CN at room temperature are the reported procedures that have been used for the preparation of diethyl a-bromophosphonates in low yields (42-67%).^{6a} Toxic SOBr₂ is the other reported brominating agent that has been applied for this purpose.^{6b} In this report, iodination of diethyl α -hydroxyphosphonates has also been tried in the presence of phosphorus triiodide (PI₃).^{6b} However, attempts to obtain α -iodophosphonates in reasonable yields failed and the desired products were obtained in poor yields ($\sim 10\%$).^{6b} Allyl bromide/carbonyl diimidazole (CDI) and MeI/CDI have been successfully applied for the preparation of diethyl α -bromo and α -iodophosphonates, respectively from diethyl a-hydroxyphosphonates.^{6c} These procedures suffer from requiring a high temperature (150 °C).

α-Azidophosphonates are important precursors for the preparation of heterocyclic compounds via 1,3-cycloaddition reactions⁷ and also for the preparation of their primary amines.^{5e,8} In this view, α -amino phosphonates, which are phosphorus analogues of the corresponding α -aminoacids, are successfully obtained by catalytic hydrogenation of α -azidophosphonates,^{5e} or by the Staudinger reaction of the azido compounds with PPh₃.^{8a,b} Methods for the direct preparation of diethyl α -azido-phosphonates from diethyl α -hydroxy phosphonates are limited to Mitsunobu reaction using PPh₃/diethyl azodicarboxylate (DEAD) and HN₃ as a source of the azide anion. This reaction requires long reaction times.^{5h} Azidation of diethyl α-chloromethylphosphonates⁹ and α -tosylatedbenzylphosphonates¹⁰ by means of sodium azide in dimethylformamide (DMF) or dimethylsulfoxide (DMSO), respectively are the other reported

^{*} Corresponding authors. Tel.: +98-711-2284822; fax: +98-711-2280926 (H.B.); (N.I.); e-mail address: firouzabadi@susc.ac.ir


^{0040–4020/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2003.10.058

methods for this purpose. Azidation of triethylphosphonoacetate with trifluromethanesulfonyl azide in the presence of Et₃N is the other reported procedure that has been used for the preparation of α -azidophosphonates.¹¹

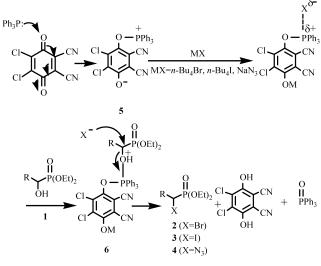
The interaction of quinones as electron-acceptors with derivatives of group VB elements in their trivalent state as electron-donors has been extensively investigated.¹² A number of investigations have dealt more specifically with the structure of the products formed between quinones and tertiary amines, phosphites and phosphines.¹³ Although some investigations have been carried out on the reaction of tertiary phosphines with quinones and on their product structures,^{12,13} the application of these mixed materials, as reagents in organic synthesis have not been described. Recently we have reported that a mixture of PPh₃ and 2,3-dichloro,5,6-dicanobenzoquinone (DDQ) affords a complex which in the presence of R₄NX (X=CL, Br, I) converts alcohols, selenols and thiols into their corresponding alkyl halides in high yields.¹⁴

In recent years, we have started extensive studies on the development of new methods for the preparation of diethyl α -functionalized phosphonates from diethyl α -hydroxyphosphonates. Along this line, we have reported mild oxidation and silylation procedures for the preparation of diethyl α -keto and α -trimethylsilyloxyphosphonates in high yields.¹⁵

We now report that the PPh₃/DDQ system has been successfully applied for the preparation of various types of diethyl α -bromo, α -iodo and α -azidophophonates from their corresponding hydroxyl compounds using MX (*n*-Bu₄NBr, *n*-Bu₄NI and NaN₃) as nucleophilic sources under mild reaction conditions in good to excellent yields (Scheme 1).

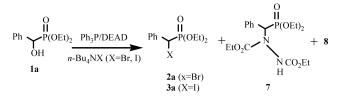
Scheme 1.

2. Results and discussion


Initially, the halogenation reaction of a variety of diethyl α -hydroxyphosphonates (1) with PPh₃/DDQ/*n*-Bu₄NX (X=Br, I) (molar ratio=2:2:2 with respect to 1) in CH₂Cl₂ at room temperature was studied. The results and the absorption peak of the α -CH group of the products in their ¹H NMR are tabulated in the Tables 1 and 2.

As shown in Tables 1 and 2, various types of diethyl α -bromophosphonates (**2a**–**m**) and diethyl α -iodophosphonates (**3a**, **e**–**g**, **i**–**k**) were obtained in good to excellent yields (60–98%) under similar reaction conditions.

In the second part of our studies, we have applied the PPh₃/DDQ system for the azidation of diethyl α -hydroxy-phosphonates. The azidation reaction for the replacement of


the hydroxyl functional group of **1a** by PPh₃/DDQ/NaN₃ with the ratio of 2:2:2 equiv. with respect to **1a** in refluxing CH₃CN progressed well in good to high yields (Table 3). The absorption peak of the α -CH group of the products in their ¹H NMR and also the absorption peak of the N₃ group in their IR spectra are tabulated in Table 3.

According to our recent proposed mechanism for the conversion of alcohols, thiols and selenols to their corresponding halides by PPh₃/DDQ/R₄NX (X=Cl, Br, I),¹⁴ we now suggest a similar pathway for the bromination, iodination and azidation of diethyl α -hydroxyphosphonates with *n*-Bu₄NBr, *n*-Bu₄NI and NaN₃ in the presence of PPh₃/DDQ. In the presented method, diethyl α -hydroxyphosphonates react with the adduct formed from the reaction of PPh₃ and DDQ (**5**) to give (**6**). Reaction of **6** with the nucleophile produces the desired products (Scheme 2).

Scheme 2.

In order to show the unique behavior of PPh₃/DDQ system for the preparation of α -functionalized phosphonates, we studied the bromination and iodination of **1a** as a model compound with *n*-Bu₄NBr and *n*-Bu₄NI in the presence of PPh₃/DEAD. The results indicate that under this reaction condition, besides the formation of the desired products **2a** in 41% yield and **3a** in 33% yield, two other by-products **7** and **8** were also isolated. One of the by-products **7** was identified as the alkylated hydrazine derivative and isolated in 5–7% for the bromination and iodination reactions (Scheme 3). The presence of a peak as a doublet for the α -CH at 5.87 ppm with ${}^{2}J_{PH}$ =13.6 Hz in its ¹H NMR spectra and also two peaks at 3250 and 1730 cm⁻¹ for N–H and –C(O)OEt in its IR spectra confirmed the formation of **7**. This type of product is quite familiar in Mitsunobu

Scheme 3.

ProductRef	R–	Time (h)	Yield ^a (%)	¹ H NMR (CDCl ₃) $\delta_{\alpha CH}$ (² J_{PH})	¹³ C NMR (CDCl ₃) $\delta_{\alpha CH}$ (¹ J_{PC})			
2a ^{6a,16}	$C_6H_5-^b$	5	98	4.79 (12.5)	41.85 (159.2)			
2b ¹⁶	$4-CH_{3}C_{6}H_{4}-^{b}$	5.5	97	4.85 (12.8)	41.80 (159.1)			
2c	$4-CH_3OC_6H_4-$	6	97	4.80 (12.7)	41.9 (162.0)			
2d	2,4,6-(CH ₃) ₃ C ₆ H ₂ -	5.5	90	5.65 (14.8)	36.19 (163.2)			
2e	$2-ClC_6H_4-$	7	97	5.53 (13.8)	36.29 (161.6)			
2f	3-ClC ₆ H ₄ -	9	95	5.36 (13.6)	36.67 (161.5)			
$2g^{16}$	$4-ClC_6H_4-^b$	8.5	98	5.86 (13.8)	40.91 (159.5)			
2h	$2,6-Cl_2C_6H_3-$	6	97	6.1 (13.9)	38.76 (158.0)			
2i	$2-O_2NC_6H_4-$	6.5	95	6.01 (14.8)	34.06 (158.2)			
2j	$3-O_2NC_6H_4-$	7	94	5.98 (14.6)	38.77 (158.0)			
$2k^{17}$	$4-O_2NC_6H_4-^b$	8.5	96	6.3 (14.8)	40.12 (157.2)			
21	2-Naphthyl	5	94	5.10 (13.9)	41.92 (159.7)			
2m	3-Pyridyl	5.5	92	4.91 (13.5)	38.28 (159.5)			

Table 1. Preparation of diethyl α -bromophosphonates (2a-n) from diethyl α -hydroxyphosphonates (1a-n) by PPh₃/DDQ/n-Bu₄NBr in CH₂Cl₂ at room temperature

^a Isolated yields.

^b Registry numbers for **2a**, **b**, **g** and **k**: 23755-78-4, 222850-34-2, 74917-62-7 and 39082-34-3, respectively.

reactions.¹⁸ Therefore, using the PPh₃/DDQ system is a superior method for the high yielding preparation of α -functionalized phosphonates without side product formation.

We have also tried the chlorination of diethyl α -hydroxyphosphonates in the presence of this system with n-Bu₄NCl·H₂O and n-Hex₄NCl. However, chlorination of the phosphonates did not proceed well and the starting materials were isolated intact.

3. Conclusion

In conclusion, in this investigation we have demonstrated the use of PPh₃/DDQ/MX system as a superior and convenient method for the preparation of varieties of diethyl α -bromo-, α -iodo- and α -azidophosphonates from the easily available corresponding diethyl α -hydroxyphosphonates. The ease of handling of the system, mild and neutral reaction conditions, the absence of the formation of the side products and the good to excellent yields of the products are the useful practical points of the presented method.

4. Experimental

Chemicals were either prepared in our laboratories or were purchased from Fluka and Merck Chemical Companies. Products were purified by plate chromatography. The purity determination of the products was accomplished by TLC on silica gel polygram SIL G/UV 254 plates. Mass spectra were run on a Shimadzu GC-Mass-QP 1000 EX at 70 eV. The IR spectra were recorded on a Shimadzu Fourier Transform Infrared Spectrophotometer (FT-IR-8300). The NMR spectra were recorded on a Bruker advance DPX 250 MHz spectrometer. The solvents were purified and dried before use.

4.1. Typical procedure for the preparation of diethyl α -bromobenzylphosphonate (2a) from diethyl α -hydroxybenzylphosphonate (1a)

n-Bu₄NBr (2 mmol, 0.644 g) was added to a stirring mixture of DDQ (2 mmol, 0.454 g) and PPh₃ (2 mmol, 0.524 g) in dry CH₂Cl₂ (10 mL) at room temperature. Then **1a** (1 mmol, 0.244 g) was added to the reaction mixture and the progress of the reaction was monitored by TLC. After 5 h, the reaction mixture was washed with H₂O (3×20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄ and filtered. Evaporation of the solvent afforded a crude product that was purified by preparative plate chromatography (silica gel) eluted with CCl₄/EtOAc (2:1) to afford diethyl α -bromobenzylphosphonate (**2a**) in 98% yield (0.3 g) as a yellow oily compound.

4.2. Typical procedure for the preparation of diethyl α -iodobenzylphosphonate (3a) from diethyl α -hydroxybenzylphosphonate (1a)

n-Bu₄NI (2 mmol, 0.738 g) was added to a stirring mixture of DDQ (2 mmol, 0.454 g) and PPh₃ (2 mmol, 0.524 g) in dry CH₂Cl₂ (10 mL) at room temperature. Then **1a** (1 mmol, 0.244 g) was added to the reaction mixture and

Table 2. Preparation of diethyl α -iodophosphonates (**3a**, **e**-**g**, **i**-**k**) from diethyl α -hydroxyphosphonates (**1a**, **e**-**g**, **i**-**k**) by PPh₃/DDQ/*n*-Bu₄NI in CH₂Cl₂ at room temperature

Product ^{Ref}	R–	Time (h)	Yield ^a (%)	¹ H NMR (CDCl ₃) $\delta_{\alpha CH}$ (² J_{PH})	¹³ C NMR (CDCl ₃) $\delta_{\alpha CH}$ (¹ J_{PC})
3a ¹⁶	$C_6H_5-^b$	3	84	4.98 (13.4)	15.41 (139.9)
3e	2-ClC ₆ H ₄ -	5	68	4.63 (13.2)	9.97 (158.2)
3f	3-ClC ₆ H ₄ -	4.5	69	4.92 (13.8)	9.96 (158.5)
3g	$4-ClC_6H_4-$	3.5	65	4.87 (13.6)	14.28 (156.3)
3i	$2-O_2NC_6H_4-$	5	63	6.16 (15.0)	7.00 (155.8)
3 <u>j</u>	$3 - O_2 NC_6 H_4 -$	4.5	60	6.05 (14.8)	13.0 (155.1)
$3k^{17}$	$4-O_2NC_6H_4-^b$	5.5	61	5.80 (13.9)	12.98 (154.6)

^a Isolated yields.

^b Registry numbers for **3a** and **k**: 222850-36-4 and 39082-35-4, respectively.

Table 3. Preparation of diethyl α -azidohosphonates (4a, e-g, i-k) from diethyl α -hydroxyphosphonates (1a, e-g, i-k) by PPh₃/DDQ/NaN₃ in refluxing CH₃CN

Product ^{Ref}	R–	Time (h)	Yield ^a (%)	IR (neat) $v_{\rm N3}/{\rm cm}^{-1}$	¹ H NMR (CDCl ₃) $\delta_{\alpha CH}$ (² J_{PH})	¹³ C NMR (CDCl ₃) $\delta_{\alpha CH}$ (¹ J_{PC})
4a ^{1h,8}	$C_6H_5-^b$	3	95	2100	4.74 (16.5)	61.96 (158.2)
4e	2-ClC ₆ H ₄ -	6	83	2150	5.29 (17.0)	56.35 (161.1)
4f	3-ClC ₆ H ₄ -	7.5	89	2123	5.02 (16.4)	47.86 (162.2)
4g	$4-ClC_6H_4-$	7	80	2110	4.65 (17.0)	61.28 (158.3)
4i	2-02NC6H4-	8.5	76	2125	4.73 (16.4)	56.46 (157.5)
4j	$3-O_2NC_6H_4-$	7.5	83	2140	4.90 (16.4)	61.10 (156.2)
4k ¹⁷	$4 - O_2 N C_6 H_4 - b$	5.5	75	2134	4.83 (16.7)	61.36 (155.0)

^a Isolated yields.

^b Registry numbers for **4a** and **k**: 131523-51-8 and 17986-31-1, respectively.

the progress of the reaction was monitored by TLC. After 3 h, the reaction mixture was washed with H₂O (3×20 mL) and the organic layer was separated and dried over anhydrous Na₂SO₄ and filtered. Evaporation of the solvent afforded a crude product that was purified by the preparative plate chromatography (silica gel) eluted with CCl₄/EtOAc (2:1) to afford diethyl α -bromobenzylphosphonate (**3a**) in 84% yield (0.297 g) as a yellow brownish oily compound.

4.3. Typical procedure for the preparation of diethyl α -azidobenzylphosphonate (4a) from diethyl α -hydroxybenzylphosphonate (1a)

NaN₃ (2 mmol, 0.13 g) was added to a stirring mixture of DDQ (2 mmol, 0.454 g) and PPh₃ (2 mmol, 0.524 g) in dry CH₃CN (10 mL). Then **1a** (1 mmol, 0.244 g) was added to the reaction mixture and was refluxed for 3 h (progress of the reaction was monitored by TLC). The resulting reaction mixture was washed with H₂O (3×20 mL), the organic layer was separated and dried over anhydrous Na₂SO₄ and filtered. Evaporation of the solvent afforded a crude product that was purified by preparative plate chromatography (silica gel) eluted with CCl₄/EtOAc (2:1) to afford diethyl α -azidobenzylphosphonate (**4a**) in 95% yield (0.255 g) as a faint yellow oily compound.

4.4. Spectral data and elemental analysis of diethyl α -bromo, α -iodo and α -azidophosphonate are presented bellow

4.4.1. Diethyl α-bromobenzylphosphonate (2a).^{6a,16} ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.08 (t, 3H, ${}^{3}J_{HH}$ =7.1 Hz, 2-OCH₂CH₃), 1.26 (t, 3H, ${}^{3}J_{HH}$ =7.1 Hz, 2-OCH₂CH₃), 3.79–3.82 (m, 1H, 2-OCH₂CH₃), 3.93–4.00 (m, 1H, 2-OCH₂CH₃), 4.03–4.17 (m, 2H, 2-OCH₂CH₃), 4.79 (d, 1H, ${}^{2}J_{PH}$ =12.5 Hz, -CH), 7.25–7.28 (m, 3H, -C₆H₅), 7.47–7.49 (m, 2H, -C₆H₅) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.57 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.78 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 41.85 (d, ${}^{1}J_{CP}$ =159.2 Hz, -CH), 64.46 (d, ${}^{2}J_{CP}$ =4.2 Hz, 2-OCH₂CH₃), 64.57 (d, ${}^{2}J_{CP}$ =4.2 Hz, 2-OCH₂CH₃), 64.57 (d, ${}^{2}J_{CP}$ =4.2 Hz, 2-OCH₂CH₃), 129.05–129.95, 134.94, 134.99 (-C₆H₅) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=307, M–Br=227, 227–P(O)(OEt)₂=90; C₁₁H₁₆BrO₃P requires C, 43.00; H, 5.21%, found: C, 43.02; H, 5.20%.

4.4.2. Diethyl α-bromo-4-methylbenzylphosphonate (2b).¹⁶ ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.16 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 1.34 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 2.34 (s, 3H, 4-CH₃), 3.85–3.92 (m, 1H,

2-OCH₂CH₃), 4.01–4.10 (m, 1H, 2-OCH₂CH₃), 4.16–4.27 (m, 2H, 2-OCH₂CH₃), 4.85 (d, 1H, ${}^{2}J_{PH}$ =12.8 Hz, -CH), 7.15 (d, 2H, ${}^{3}J_{\text{HH}}$ =6.9 Hz, $-C_{6}H_{4}$), 7.45 (d, 2H, ${}^{3}J_{\text{HH}}=6.3 \text{ Hz}, -C_{6}H_{4}) \text{ ppm;} {}^{13}C \text{ NMR} (\text{CDCl}_{3}, \text{TMS},$ 62.9 MHz): 16.50 (d, ${}^{3}J_{CP}$ =5.7 Hz, 2-OCH₂CH₃), 16.82 (d, ${}^{3}J_{CP}$ =5.7 Hz, 2-OCH₂CH₃), 22.18 (4-CH₃), 41.80 (d, $^{1}J_{CP}$ =159.1 Hz, 63.51 -CH), (d, $^{2}J_{CP}$ =4.5 Hz, 2-OCH₂CH₃), 64.70 (d, ${}^{2}J_{CP}$ =4.5 Hz, 2-OCH₂CH₃), 130.0–132.5, 136.4–138.9 ($-C_6H_4$) ppm; IR (neat): peak of OH was absent.; MS (70 eV), m/e: M⁺=321, $241 - P(O)(OEt)_2 = 104;$ M - Br = 241, $C_{12}H_{18}BrO_3P$ requires C, 44.86; H, 5.61%, found: C, 44.85; H, 5.60%.

4.4.3. Diethyl α-bromo-4-methoxybenzylphosphonate (**2c**). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.09 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 1.27 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 3.74 (s, 3H, 4-OCH₃), 3.79–3.85 (m, 1H, 2-OCH₂CH₃), 3.94–4.04 (m, 1H, 2-OCH₂CH₃), 4.10–4.21 (m, 2H, 2-OCH₂CH₃), 4.80 (d, 1H, ²J_{PH}=12.7 Hz, -CH), 6.80 (d, 2H, ³J_{HH}=8.6 Hz, $-C_6H_4$), 7.44 (d, 2H, ³J_{HH}=7.5 Hz, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.63 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 16.80 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 41.9 (d, ¹J_{CP}=162.0 Hz, -CH), 55.69 (4-OCH₃), 64.33 (d, ²J_{CP}=6.7 Hz, 2-OCH₂CH₃), 64.43 (d, ²J_{CP}=6.7 Hz, 2-OCH₂CH₃), 114.49, 126.95, 130.64–131.29, 160.45 ($-C_6H_4$) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=337, M-Br=257, 257–P(O)(OEt)₂=120; C₁₂H₁₈BrO₄P requires C, 42.73; H, 5.34%, found: C, 42.71; H, 5.32%.

4.4.4. Diethyl α-bromo-2,4,6-trimethylbenzylphosphonate (2d). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 0.98 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 1.31 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 2.21 (s, 3H, -CH₃), 2.29 (s, 3H, -CH₃), 2.60 (s, 3H, -CH₃), 3.61-3.64 (m, 1H, 2-OCH₂CH₃), 3.87-3.91 (m, 1H, 2-OCH₂CH₃), 4.13–4.21 (m, 2H, 2-OCH₂CH₃), 5.65 (d, 1H, ${}^{2}J_{PH}$ =14.8 Hz, -CH), 6.75 (s, 1H, $-C_{6}H_{2}$), 6.81 (s, 1H, $-C_{6}H_{2}$) ppm; ${}^{13}C$ NMR (CDCl₃, TMS, 62.9 MHz): 15.00-15.39 (m, 2-OCH₂CH₃), 20.07 (-CH₃), 20.71 ($-CH_3$), 28.68 ($-CH_3$), 36.19 (d, $^1J_{CP}$ =163.2 Hz, -CH), 62.88-63.36 (m, 2-OCH₂CH₃), 128.02, 130.56 $(-C_6H_2)$ ppm; IR (neat): peak of OH was absent.; $M^{+}=349.$ MS (70 eV), m/e: M - Br = 269. 269-P(O)(OEt)₂=132; C₁₄H₂₂BrO₃P requires C, 48.14; H, 6.30%, found: C, 48.12; H, 6.28%.

4.4.5. Diethyl α-bromo-2-chlorobenzylphosphonate (2e). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.18 (t, 3H, ³ J_{HH} =7.5 Hz, 2-OCH₂CH₃), 1.36 (t, 3H, ³ J_{HH} =7.5 Hz, 2-OCH₂CH₃), 3.88–4.12 (m, 2H, 2-OCH₂CH₃), 4.22–4.31 (m, 2H, 2-OCH₂CH₃), 5.53 (d, 1H, ${}^{2}J_{PH}$ =13.8 Hz, -CH), 7.25-7.37 (m, 3H, -C₆H₄), 7.99 (d, 1H, ${}^{3}J_{HH}$ =7.4 Hz, -C₆H₄) ppm; 13 C NMR (CDCl₃, TMS, 62.9 MHz): 16.19 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.43 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 36.29 (d, ${}^{1}J_{CP}$ =161.6 Hz, -CH), 64.05 (d, ${}^{2}J_{CP}$ =6.9 Hz, 2-OCH₂CH₃), 64.37 (d, ${}^{2}J_{CP}$ =6.9 Hz, 2-OCH₂CH₃), 127.52-133.56 (-C₆H₄) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=342, M+2=344, M-Br=262, 262-P(O)(OEt)₂=125; C₁₁H₁₅BrClO₃P requires C, 38.60; H, 4.39%, found: C, 38.60; H, 4.36%.

4.4.6. Diethyl α-bromo-3-chlorobenzylphosphonate (2f). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.08 (t, 3H, ³J_{HH}=7.1 Hz, 2-OCH₂CH₃), 1.28 (t, 3H, ³J_{HH}=7.1 Hz, 2-OCH₂CH₃), 3.78–4.01 (m, 2H, 2-OCH₂CH₃), 4.14–4.26 (m, 2H, 2-OCH₂CH₃), 5.36 (d, 1H, ²J_{PH}=13.6 Hz, -CH), 7.14–7.30 (m, 3H, $-C_6H_4$), 7.89–7.93 (m, 1H, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.54 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 16.78 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 36.67 (d, ¹J_{CP}=161.5 Hz, -CH), 64.40 (d, ²J_{CP}=7.0 Hz, 2-OCH₂CH₃), 64.72 (d, ²J_{CP}=7.0 Hz, 2-OCH₂CH₃), 127.85–133.93 ($-C_6H_4$) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=342, M+2=344, M-Br=262, 262-P(O)(OEt)₂=125; C₁₁H₁₅BrClO₃P requires C, 38.60; H, 4.39%, found: C, 38.61; H, 4.41%.

4.4.7. Diethyl α -bromo-4-chlorobenzylphosphonate (2g).¹⁶ ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.11 (t, 3H, ${}^{3}J_{\rm HH}$ =7.0 Hz, 2-OCH₂CH₃), 1.26 (t, 3H, ${}^{3}J_{\rm HH}$ =7.0 Hz, 2-OCH₂CH₃), 3.79-3.90 (m, 1H, 2-OCH₂CH₃), 3.95-4.04 (m, 1H, 2-OCH₂CH₃), 4.10-4.21 (m, 2H, 2-OCH₂CH₃), 5.86 (d, 1H, ${}^{2}J_{PH}$ =13.8 Hz, -CH), 7.24 (d, 2H, ${}^{3}J_{\rm HH}$ =8.4 Hz, -C₆H₄), 7.43 (d, 2H, ${}^{3}J_{\rm HH}$ =8.4 Hz, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.62 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.79 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 40.91 (d, ${}^{1}J_{CP}$ =159.5 Hz, -CH), 64.43 (d, $^{2}J_{CP}$ =7.0 Hz, 2-OCH₂CH₃), 64.67 (d, $^{2}J_{CP}$ =7.0 Hz, 2-OCH₂CH₃), 129.24–135.33 (-C₆H₄) ppm; IR (neat): peak of OH was absent.; MS (70 eV), m/e: M+=342, M+2=344, $262 - P(O)(OEt)_2 = 125;$ $C_{11}H_{15}BrClO_3P$ M - Br = 262, requires C, 38.60; H, 4.39%, found: C, 38.59; H, 4.38%.

4.4.8. Diethyl α -bromo-2,6-dichlorobenzylphosphonate (**2h**). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.12–1.20 (m, 3H, 2-OCH₂CH₃), 1.33–1.40 (m, 3H, 2-OCH₂CH₃), 3.91– 4.06 (m, 2H, 2-OCH₂CH₃), 4.19–4.27 (m, 2H, 2-OCH₂CH₃), 6.1 (d, 1H, ${}^{2}J_{PH}$ =13.9 Hz, -CH), 7.16–7.35 (m, 3H, -C₆H₄) ppm; 13 C NMR (CDCl₃, TMS, 62.9 MHz): 16.86 (d, ${}^{3}J_{CP}$ =6.8 Hz, 2-OCH₂CH₃), 16.96 (d, ${}^{3}J_{CP}$ =6.8 Hz, 2-OCH₂CH₃), 38.76 (d, ${}^{1}J_{CP}$ =158.0 Hz, -CH), 63.35 (d, ² J_{CP} =7.1 Hz, 2-OCH₂CH₃), 63.60 (d, ²*J*_{CP}=7.1 Hz, 2-OCH₂CH₃), 128.60, 129.99, 131.31, 135.73, 136.87 ($-C_6H_3$) ppm; IR (neat): peak of OH was absent.; MS $M^{+}=376,$ M+2=378, M+4=381,(70 eV), m/e: M-Br=296, 296-P(O)(OEt)₂=159; $C_{11}H_{14}BrClO_{3}P$ requires C, 35.11; H, 3.72%, found: C, 35.08; H, 3.69%.

4.4.9. Diethyl α-bromo-2-nitrobenzylphosphonate (2i). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.15 (t, 3H, ³ J_{HH} =7.0 Hz, 2-OCH₂CH₃), 1.36 (t, 3H, ³ J_{HH} =7.0 Hz, 2-OCH₂CH₃), 3.91–4.16 (m, 2H, 2-OCH₂CH₃), 4.22–4.34 (m, 2H, 2-OCH₂CH₃), 6.01 (d, 1H, ² J_{PH} =14.8 Hz, -CH), 7.46–7.56 (m, 1H, -C₆H₄), 7.63–7.70 (m, 1H, -C₆H₄), 7.92 (d, 1H, ${}^{3}J_{HH}$ =7.9 Hz, $-C_{6}H_{4}$), 8.18 (d, 1H, ${}^{3}J_{HH}$ =8.1 Hz, $-C_{6}H_{4}$) ppm; 13 C NMR (CDCl₃, TMS, 62.9 MHz): 16.10 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.38 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 34.06 (d, ${}^{1}J_{CP}$ =158.2 Hz, -CH), 64.02 (d, ${}^{2}J_{CP}$ =7.2 Hz, 2-OCH₂CH₃), 64.80 (d, ${}^{2}J_{CP}$ =7.2 Hz, 2-OCH₂CH₃), 124.76, 128.47–129.61, 132.07–132.22, 133.28–133.42 ($-C_{6}$ H₄) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=352, M–Br=272, 272–P(O)(OEt)₂=135; C₁₁H₁₅BrNO₅P requires C, 37.5; H, 4.26%, found: C, 37.8; H, 4.28%.

4.4.10. Diethyl α-bromo-3-nitrobenzylphosphonate (2j). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.14 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 1.28 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 3.92–4.24 (m, 4H, 2-OCH₂CH₃), 5.98 (d, 1H, ²J_{PH}=14.6 Hz, -CH), 7.49 (t, 1H, ³J_{HH}=8.0 Hz, -C₆H₄), 7.88 (d, 1H, ³J_{HH}=7.7 Hz, -C₆H₄), 8.13 (d, 1H, ³J_{HH}=7.8 Hz, -C₆H₄), 8.32 (s, 1H, -C₆H₄) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 15.26 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 15.40 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 38.77 (d, ¹J_{CP}=158.0 Hz, -CH), 63.25 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 63.65 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 122.76-123.46, 128.74, 134.48-134.57 (-C₆H₄) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=352, M-Br=272, 272-P(O)(OEt)₂=135; C₁₁H₁₅BrNO₅P requires C, 37.5; H, 4.26%, found: C, 37.6; H, 4.27%.

4.4.11. Diethyl α-bromo-4-nitrobenzylphosphonate (2k).¹⁷ ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.10–1.14 (m, 3H, 2-OCH₂CH₃), 1.27–1.30 (m, 3H, 2-OCH₂CH₃), 3.90–4.05 (m, 2H, 2-OCH₂CH₃), 4.12–4.21 (m, 2H, 2-OCH₂CH₃), 6.3 (d, 1H, ${}^{2}J_{PH}$ =14.8 Hz, -CH), 7.66–7.69 (m, 2H, -C₆H₄), 8.12–8.15 (m, 2H, -C₆H₄) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.63 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.78 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 40.12 (d, ${}^{1}J_{CP}$ =157.2 Hz, -CH), 64.60 (d, ${}^{2}J_{CP}$ =7.0 Hz, 2-OCH₂CH₃), 65.05 (d, ${}^{2}J_{CP}$ =7.0 Hz, 2-OCH₂CH₃), 130.19–130.96, 142.34–142.40 (-C₆H₄) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=352, M–Br=272, 272–P(O)(OEt)₂=135; C₁₁H₁₅BrNO₅P requires C, 37.5; H, 4.26%, found: C, 37.8; H, 4.29%.

4.4.12. Diethyl α-bromo-2-naphthylphosphonate (2l). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.12 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.1 Hz, 2-OCH₂CH₃), 1.34 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.1 Hz, 2-OCH₂CH₃), 3.81–3.91 (m, 1H, 2-OCH₂CH₃), 4.00–4.10 (m, 1H, 2-OCH₂CH₃), 4.18–4.30 (m, 2H, 2-OCH₂CH₃), 5.10 (d, 1H, ${}^{2}J_{PH}$ =13.9 Hz, -CH), 7.46-7.50 (m, 2H, $-C_{10}H_7$), 7.71–7.83 (m, 4H, $-C_{10}H_7$), 7.97 (s, 1H, -C₁₀*H*₇) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.21 (d, ${}^{3}J_{CP}=5.8$ Hz, 2-OCH₂CH₃), 16.42 (d, ${}^{3}J_{CP}=5.8$ Hz, 2-OCH₂CH₃), 41.92 (d, ¹J_{CP}=159.7 Hz, -CH), 64.11 (d, $^{2}J_{\rm CP}$ =7.4 Hz, 2-OCH₂CH₃), 64.22 $(^{2}J_{CP}=7.4 \text{ Hz},$ 2-OCH₂CH₃), 126.04–128.97, 131.90–133.31 $(-C_{10}H_7)$ ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: $M^+=357$, M-Br=277, $277-P(O)(OEt)_2=140$; C₁₅H₁₈BrO₃P requires C, 50.42; H, 5.04%, found: C, 50.4; H, 5.0%.

4.4.13. Diethyl α-bromo-3-pyridylphosphonate (2m). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.20 (t, 3H, ³*J*_{HH}=7.1 Hz, 2-OCH₂CH₃), 1.35 (t, 3H, ³*J*_{HH}=7.1 Hz, 2-OCH₂CH₃), 3.93–4.15 (m, 2H, 2-OCH₂CH₃), 4.20–4.31

(m, 2H, 2-OCH₂CH₃), 4.91 (d, 1H, ${}^{2}J_{PH}$ =13.5 Hz, -CH), 7.31-7.36 (m, 1H, -C₅H₄N), 8.04 (d, 1H, ${}^{3}J_{HH}$ =8.0 Hz, -C₅H₄N), 8.58 (d, 1H, ${}^{3}J_{HH}$ =4.1 Hz, -C₅H₄N), 8.68 (s, 1H, -C₅H₄N) ppm; 13 C NMR (CDCl₃, TMS, 62.9 MHz): 16.25 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.42 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 38.28 (d, ${}^{1}J_{CP}$ =159.5 Hz, -CH), 64.46 (d, ${}^{2}J_{CP}$ =7.1 Hz, 2-OCH₂CH₃), 64.80 (d, ${}^{2}J_{CP}$ =7.1 Hz, 2-OCH₂CH₃), 123.94, 128.70-128.89, 13.56-132.44, 137.64-137.72, 149.96-150.27 (-C₅H₄N) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=308, M-Br=228, 228-P(O)(OEt)₂=91; C₁₀H₁₅BrNO₃P requires C, 38.96; H, 4.87%, found: C, 38.90; H, 4.80%.

4.4.14. Diethyl α-iodobenzylphosphonate (3a).¹⁶ ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.13 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 1.32 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 3.84-3.90 (m, 1H, 2-OCH₂CH₃), 3.99-3.08 (m, 1H, 2-OCH₂CH₃), 4.18-4.27 (m, 2H, 2-OCH₂CH₃), 4.98 (d, 1H, ${}^{2}J_{PH}$ =13.4 Hz, -CH), 7.28-7.31 (m, 3H, -C₆H₅), 7.56–7.59 (m, 2H, $-C_6H_5$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 15.41 (d, ${}^{1}J_{CP}$ =139.9 Hz, -CH), 16.57 (d, ${}^{3}J_{CP}$ =5.9 Hz, 2-OCH₂CH₃), 16.7 (d, ${}^{3}J_{CP}$ =5.9 Hz, $2-OCH_2CH_3$), 64.42 (d, ${}^2J_{CP}=8.6$ Hz, $2-OCH_2CH_3$), 64.55 $^{2}J_{\rm CP}$ =8.6 Hz, 2-OCH₂CH₃), (d, 128.95-130.04 $(-C_6H_5)$ ppm; IR (neat): peak of OH was absent.; M - Br = 226, $M^{+}=354,$ MS (70 eV), m/e: 226-P(O)(OEt)₂=89; C₁₁H₁₆IO₃P requires C, 37.29; H, 4.52%, found: C, 37.2; H, 4.58%.

4.4.15. Diethyl α-iodo-2-chlorobenzylphosphonate (3e). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.08 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 1.28 (t, 3H, ³J_{HH}=7.0 Hz, 2-OCH₂CH₃), 3.81–4.02 (m, 2H, 2-OCH₂CH₃), 4.12– 4.24 (m, 2H, 2-OCH₂CH₃), 4.63 (d, 1H, ²J_{PH}=13.2 Hz, -CH), 7.10–7.25 (m, 3H, $-C_6H_4$), 7.97 (d, 1H, ³J_{HH}=7.9 Hz, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 9.97 (d, ¹J_{CP}=158.2 Hz, -CH), 16.55 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 16.75 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 64.45 (d, ²J_{CP}=7.0 Hz, 2-OCH₂CH₃), 64.64 (d, ²J_{CP}=7.0 Hz, 2-OCH₂CH₃), 127.98, 128.01, 129.69–130.08, 132.84–133.06, 134.80 ($-C_6H_4$) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=389, M+2=391, M-Br=261, 261-P(O)(OEt)₂= 125; C₁₁H₁₅ClIO₃P requires C, 33.93; H, 3.86%, found: C, 33.90; H, 3.84%.

4.4.16. Diethyl α-iodo-3-chlorobenzylphosphonate (3f). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.08 (t, 3H, ³J_{HH}=6.7 Hz, 2-OCH₂CH₃), 1.29 (t, 3H, ³J_{HH}=6.7 Hz, 2-OCH₂CH₃), 3.86–4.00 (m, 2H, 2-OCH₂CH₃), 4.16–4.22 (m, 2H, 2-OCH₂CH₃), 4.92 (d, 1H, ²J_{PH}=13.8 Hz, -CH), 7.17–7.23 (m, 3H, $-C_6H_4$), 7.96–7.99 (m, 1H, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 9.96 (d, ¹J_{CP}=158.5 Hz, -CH), 16.50 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 16.75 (d, ³J_{CP}=5.8 Hz, 2-OCH₂CH₃), 64.51 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 64.70 (d, ²J_{CP}=7.1 Hz, 2-OCH₂CH₃), 128.03, 129.99–130.07, 132.89–132.95, 134.82 ($-C_6H_4$) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=389, M+2=391, M-Br=261, 261–P(O)(OEt)₂=125; C₁₁H₁₅CIIO₃P requires C, 33.93; H, 3.86%, found: C, 33.91; H, 3.84%.

4.4.17. Diethyl α -iodo-4-chlorobenzylphosphonate (3g).

¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.10 (t, 3H, ${}^{3}J_{HH}$ =7.0 Hz, 2-OCH₂CH₃), 1.27 (t, 3H, ${}^{3}J_{HH}$ =7.0 Hz, 2-OCH₂CH₃), 3.78–4.17 (m, 4H, 2-OCH₂CH₃), 4.87 (d, 1H, ${}^{2}J_{PH}$ =13.6 Hz, -CH), 7.20 (d, 2H, ${}^{3}J_{HH}$ =8.2 Hz, -C₆H₄), 7.44 (d, 2H, ${}^{3}J_{HH}$ =8.2 Hz, -C₆H₄) ppm; 13 C NMR (CDCl₃, TMS, 62.9 MHz): 14.28 (d, ${}^{1}J_{CP}$ =156.3 Hz, -CH), 16.62 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 16.76 (d, ${}^{3}J_{CP}$ =5.8 Hz, 2-OCH₂CH₃), 64.59 (d, ${}^{2}J_{CP}$ =6.8 Hz, 2-OCH₂CH₃), 129.33, 131.19, 131.31, 134.78, 135.48 (-C₆H₄) ppm; IR (neat): peak of OH was absent.; MS (70 eV), *m/e*: M⁺=389, M+2=391, M-Br=261, 261-P(O)(OEt)₂=125; C₁₁H₁₅CIIO₃P requires C, 33.93; H, 3.86%, found: C, 33.94; H, 3.87%.

4.4.18. Diethyl α-iodo-2-nitrobenzylphosphonate (3i). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.23 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 1.34 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 4.00-4.31 (m, 4H, 2-OCH₂CH₃), 6.16 (d, 1H, $^{2}J_{\text{PH}}$ =15.0 Hz, -CH), 7.48-7.54 (m, 1H, -C₆H₄), 7.66-7.72 (m, 1H, $-C_6H_4$), 7.96 (d, 1H, ${}^2J_{PH}$ =8.2 Hz, $-C_6H_4$), 8.09 (d, 1H, ${}^{2}J_{PH}$ =8.0 Hz, $-C_{6}H_{4}$) ppm; ${}^{13}C$ NMR (CDCl₃, TMS, 62.9 MHz): 7.00 (d, ${}^{1}J_{CP}$ =155.8 Hz, -*C*H), 16.50 (d, ${}^{3}J_{CP}$ =5.9 Hz, 2-OCH₂CH₃), 16.71 (d, {}^{3}J_{CP}=5.9 Hz, 2-OCH₂CH₃ 2-OCH₂CH₃), 63.31 (d, ²J_{CP}=8.8 Hz, 2-OCH₂CH₃), 64.50 $(d, {}^{2}J_{CP} = 8.8 \text{ Hz}, 2\text{-}OCH_{2}CH_{3}), 127.5 - 129.6 (-C_{6}H_{4}) \text{ ppm};$ IR (neat): peak of OH was absent.; MS (70 eV), m/e: $261 - P(O)(OEt)_2 = 136;$ $M^+=399$, M - Br = 272, C11H15INO5P requires C, 33.08; H, 3.76%, found: C, 33.02; H, 3.71%.

4.4.19. Diethyl α-iodo-3-nitrobenzylphosphonate (3j). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.15 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 1.28 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 3.90–4.23 (m, 4H, 2-OCH₂CH₃), 6.05 (d, 1H, $^{2}J_{\text{PH}}$ =14.8 Hz, -CH), 7.44 (t, 1H, $^{3}J_{\text{HH}}$ =8.0 Hz, -C₆H₄), 7.89 (d, 1H, ${}^{3}J_{HH}=7.7$ Hz, $-C_{6}H_{4}$), 8.07 (d, 1H, ${}^{3}J_{\text{HH}}$ =7.6 Hz, -C₆H₄), 8.31 (s, 1H, -C₆H₄) ppm; ${}^{13}\text{C}$ NMR (CDCl₃, TMS, 62.9 MHz): 13.0 (d, ¹*J*_{CP}=155.1 Hz, 16.59-16.80 $(2-OCH_2CH_3),$ 64.68-65.02 -CH). (2-OCH₂CH₃), 123.70–124.77, 130.24, 136.10, 136.20, 139.25 ($-C_6H_4$) ppm; IR (neat): peak of OH was absent.; (70 eV), $M^{+}=399.$ MS m/e: M-Br=272. $261-P(O)(OEt)_2=136$; $C_{11}H_{15}INO_5P$ requires C, 33.08; H, 3.76%, found: C, 33.06; H, 3.74%.

4.4.20. Diethyl α -iodo-4-nitrobenzylphosphonate (3k).¹⁷ ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.04–1.18 (m, 3H, 2-OCH₂CH₃), 1.26–1.31 (m, 3H, 2-OCH₂CH₃), 3.85–4.07 (m, 2H, 2-OCH₂CH₃), 4.12–4.21 (m, 2H, 2-OCH₂CH₃), 5.80 (d, 1H, ${}^{2}J_{PH}$ =13.9 Hz, -CH), 7.65-7.69 (m, 2H, $-C_6H_4$), 8.08–8.18 (m, 2H, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 12.98 (d, ${}^{-1}J_{CP}$ =154.6 Hz, $(2-OCH_2CH_3),$ 16.59–16.82 64.70-65.09 -CH). (OCH₂CH₃), 124.02, 124.27, 130.19, 130.90, 131.01 $(-C_6H_4)$ ppm; IR (neat): peak of OH was absent.; MS (70 eV), m/e: $M^{+}=399$, M-Br=272, $261-P(O)(OEt)_2=136$; C₁₁H₁₅INO₅P requires C, 33.08; H, 3.76%, found: C, 33.02; H, 3.71%.

4.4.21. Diethyl α-azidobenzylphosphonate (4a).^{1h,8} ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.21–1.31 (m, 6H, 2-OCH₂CH₃), 3.94–4.14 (m, 4H, 2-OCH₂CH₃), 4.74 (d, 1H, ²J_{PH}=16.5 Hz, -CH), 7.38–7.45 (m, 5H, -C₆H₅) ppm; ¹³C

NMR (CDCl₃, TMS, 62.9 MHz): 16.80 (d, ${}^{3}J_{CP}$ =6.0 Hz, 2-OCH₂CH₃), 61.96 (d, ${}^{1}J_{CP}$ =158.2 Hz, -CH), 63.91 (d, ${}^{2}J_{CP}$ =8.6 Hz, 2-OCH₂CH₃), 128.61–129.28 (-C₆H₄) ppm; IR (neat): ν 2100 (N₃) cm⁻¹, Peak of OH was absent.; MS (70 eV), *m/e*: M⁺=269, M-N₃=227, 227–P(O)(OEt)₂=90; C₁₁H₁₆N₃O₃P requires C, 49.07; H, 5.95%, found: C, 49.10; H, 5.90%.

4.4.22. Diethyl α -azido-2-chlorobenzylphosphonate (4e). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.15 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 1.29 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 3.85-4.20 (m, 4H, 2-OCH₂CH₃), 5.29 (d, 1H, $^{2}J_{\text{PH}}=17.0 \text{ Hz}, -CH$, 7.19–7.37 (m, 3H, $-C_{6}H_{4}$), 7.61– 7.64 (m, 1H, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 15.13-15.46 62.9 MHz): $(2-OCH_2CH_3),$ 56.35 (d. $^{1}J_{CP}$ =161.1 Hz, -CH), 62.90–63.32 (2-OCH₂CH₃), 126.31, 128.67–129.17 ($-C_6H_4$) ppm; IR (neat): ν 2150 (N_3) cm⁻¹, Peak of OH was absent.; MS (70 eV), *m/e*: M⁺=304, M+2=306, M-N₃=261, 261-P(O)(OEt)₂= 125; C₁₁H₁₅ClN₃O₃P requires C, 43.42; H, 4.93%, found: C, 43.45; H, 4.95%.

4.4.23. Diethyl α -azido-3-chlorobenzylphosphonate (4f). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.13 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 1.29 (t, 3H, ${}^{3}J_{\text{HH}}$ =7.0 Hz, 2-OCH₂CH₃), 3.85–4.01 (m, 2H, 2-OCH₂CH₃), 4.11–4.22 (m, 2H, 2-OC H_2 CH₃), 5.02 (d, 1H, ${}^2J_{PH}$ =16.4 Hz, -CH), 7.20–7.33 (m, 3H, $-C_6H_4$), 7.80–7.85 (m, 1H, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 15.13–15.46 (2-OCH₂CH₃), 47.86 (d, ${}^{1}J_{CP}$ =162.2 Hz, 62.89–63.32 (2-OCH₂CH₃), 126.30-126.41. -CH). 128.31–129.08, 130.30, 130.36 ($-C_6H_4$) ppm; IR (neat): ν 2123 (N₃) cm⁻¹, Peak of OH was absent.; MS (70 eV), $M^+=304,$ M+2=306, $M - N_3 = 261$, mle: $261 - P(O)(OEt)_2 = 125;$ $C_{11}H_{15}CIN_3O_3P$ requires C. 43.42; H, 4.93%, found: C, 43.40; H, 4.90%.

4.4.24. Diethyl α-azido-4-chlorobenzylphosphonate (4g). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.11–1.29 (m, 6H, 2-OCH₂CH₃), 3.90–4.13 (m, 4H, 2-OCH₂CH₃), 4.65 (d, 1H, ²J_{PH}=17.0 Hz, -CH), 7.27–7.42 (m, 4H, -C₆H₄) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.70–16.85 (2-OCH₂CH₃), 61.28 (d, ¹J_{CP}=158.3 Hz, -CH), 63.91– 64.16 (2-OCH₂CH₃), 129.30–129.96 (-C₆H₄) ppm; IR (neat): ν 2110 (N₃) cm⁻¹, Peak of OH was absent.; MS (70 eV), *m/e*: M⁺=304, M+2=306, M-N₃=261, 261–P(O)(OEt)₂=125; C₁₁H₁₅ClN₃O₃P requires C, 43.42; H, 4.93%, found: C, 43.41; H, 4.92%.

4.4.25. Diethyl α-azido-2-nitrobenzylphosphonate (4i). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.07–1.34 (m, 6H, 2-OCH₂CH₃), 3.92–4.20 (m, 4H, 2-OCH₂CH₃), 4.73 (d, 1H, $^{2}J_{\text{PH}}$ =16.4 Hz, -CH), 7.44 (t, 1H, $^{3}J_{\text{HH}}$ =7.5 Hz, -C₆H₄), 7.61 (t, ${}^{3}J_{\text{HH}}$ =7.5 Hz, 1H, $-C_{6}H_{4}$), 7.77 (d, 1H, ${}^{3}J_{\text{HH}}$ =7.7 Hz, $-C_{6}H_{4}$), 7.92 (d, 1H, ${}^{3}J_{\text{HH}}$ =8.2 Hz, $-C_{6}H_{4}$), ppm; ${}^{13}\text{C}$ NMR (CDCl₃, TMS, 62.9 MHz): 16.56–16.76 (2-OCH₂CH₃), 56.46 (d, ${}^{1}J_{CP}$ =157.5 Hz, $(2-OCH_2CH_3),$ 125.20-125.53, -*C*H), 64.12–64.33 129.67–130.39, 133.78, 133.83 ($-C_6H_4$) ppm; IR (neat): ν 2125 (N₃) cm⁻¹, IR (neat): peak of OH was bsent.; M-N₃=272, MS (70 eV), $M^{+}=314$, m/e: 272-P(O)(OEt)₂=135; C₁₁H₁₅N₄O₅P requires C, 42.04; H, 4.78%, found: C, 42.03; H, 4.71%.

4.4.26. Diethyl α-azido-3-nitrobenzylphosphonate (4j). ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.26–1.37 (m, 6H, 2-OCH₂CH₃), 4.06–4.26 (m, 4H, 2-OCH₂CH₃), 4.90 (d, 1H, ²J_{PH}=16.4 Hz, -CH), 7.55–7.62 (m, 1H, -C₆H₄), 7.80– 7.83 (m, 1H, -C₆H₄), 8.21–8.39 (m, 2H, -C₆H₄) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.75 (d, ³J_{CP}=5.9 Hz, 2-OCH₂CH₃), 61.10 (d, ¹J_{CP}=156.2 Hz, -CH), 63.1 (d, ²J_{CP}=8.2 Hz, 2-OCH₂CH₃), 123.33–123.94, 128.83– 130.06, 132.44–132.60, 134.31 (-C₆H₄) ppm; IR (neat): ν 2140 (N₃) cm⁻¹, Peak of OH was absent.; MS (70 eV), *m/e*: M⁺=314, M-N₃=272, 272–P(O)(OEt)₂=135; C₁₁H₁₅N₄O₅P requires C, 42.04; H, 4.78%, found: C, 42.02; H, 4.70%.

4.4.27. Diethyl α-azido-4-nitrobenzylphosphonate (4k).¹⁷ ¹H NMR (CDCl₃, TMS, 250 MHz): δ 1.18–1.27 (m, 6H, 2-OCH₂CH₃), 3.99–4.14 (m, 4H, 2-OCH₂CH₃), 4.83 (d, 1H, ²J_{PH}=16.7 Hz, -CH), 7.57 (m, 2H, $-C_6H_4$), 8.18 (d, 2H, $-C_6H_4$) ppm; ¹³C NMR (CDCl₃, TMS, 62.9 MHz): 16.80 (d, ³J_{CP}=5.5 Hz, 2-OCH₂CH₃), 61.36 (d, ¹J_{CP}=155.0 Hz, -CH), 64.35 (2-OCH₂CH₃), 124.12–124.30, 129.00– 129.33, 131.51 ($-C_6H_4$) ppm; IR (neat): ν 2134 (N₃) cm⁻¹, Peak of OH was absent.; MS (70 eV), *m/e*: M⁺=314, M–N₃=272, 272–P(O)(OEt)₂=135; C₁₁H₁₅N₄O₅P requires C, 42.04; H, 4.78%, found: C, 42.01; H, 4.72%.

Acknowledgements

We are thankful to the Shiraz University Research Council for the partial support of this work.

References and notes

- (a) Kabachnik, M. M.; Synatkova, E. V.; Novikova, Z. S.; Abramova, G. L.; Rozhkova, N. G.; Andreeva, E. I. Vesthn. Mosk. Univ., Ser. 2: Khim. 1990, 31, 384–389. (b) Birum, G. H.; Richardson, G. A. US Patent 3,113,139 (to Monsanto Chem. Co), December 3, 1963; Chem. Abstr. 1964, 60, 5551d.
 (c) Olah, G. A.; Wu, A. J. Org. Chem. 1991, 56, 902–904. (d) Sprecher, M.; Kost, D. J. Am. Chem. Soc. 1994, 116, 1016–1026. (e) Breuer, E.; Moshe, R. Isr. J. Chem. 1986, 27, 45–47. (f) Telan, L. A.; Poon, C.-D.; Evans, S. A. J. Org. Chem. 1996, 61, 7455–7462. (g) William, P. T.; Zhong-Yin, Z.; Theodores, W. Bioorg. Med. Chem. 1996, 4, 1515–1520. (h) Sikora, D.; Nonas, T.; Gajda, T. Tetrahedron 2001, 57, 1619–1625.
- (a) Akihiro, Y.; Mitsuo, O. Nippon Kagaku Kaishi 1972, 2103–2107. (b) Wadsworth,W. S., Jr. Organic Reactions; Weily: New York, 1977; Vol. 25. Chapter 2, pp 73–253. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927. (d) Kumaraswamy, S.; Swamy, K. Tetrahedron Lett. 1997, 38, 2183–2184. (e) Zimmer, H.; Bercz, P. J.; Maltenieks, O. J.; Moore, M. W. J. Am. Chem. Soc. 1965, 87, 2777–2778. (f) Gallagher, M. J.; Noerdin, H. Aust. J. Chem. 1985, 38, 997–1005. (g) Kondo, K.; Ohnishi, N.; Takemoto, K.; Yoshida, H.; Yoshida, K. J. Org. Chem. 1992, 57, 1622–1625.
- (a) Baraldi, P. G.; Guarneri, M.; Moroder, F.; Polloni, G. P.; Simoni, D. Synthesis 1982, 653–655. (b) Texier-Boullet, F.; Foucaud, A. Synthesis 1982, 916.

- Okamoto, Y.; Okada, T.; Sakurai, H. Bull. Chem. Soc. Jpn 1975, 48, 484–487.
- (a) Kiddle, J. J.; Babbler, J. H. J. Org. Chem. 1993, 58, 3572–3574. (b) Minami, T.; Motoyoshiya, J. Synthesis 1992, 333–349. (c) Berte-Verrando, S.; Nief, F.; Patois, C.; Savignac, P. J. Chem. Soc., Perkin Trans. 1 1995, 2045–2048. (d) Hammerschmidt, F.; Vollenkle, H. Liebigs Ann. Chem. 1989, 577–583. (e) Yokomatsu, T.; Shibuya, S. Tetrahedron: Asymmetry 1992, 3, 377–378. (f) Gajda, T.; Matusiak, M. Synthesis 1992, 367–368. (g) Ohler, E.; Kotzinger, S. Synthesis 1993, 497–502.
- 6. (a) Gajda, T. *Phosphorus, Sulfur Silicon* 1990, *53*, 327–331.
 (b) Kumaraswamy, S.; Senthamizh Selvi, R.; Kumaraswamy, K. C. *Synthesis* 1997, 207–212.
 (c) Green, D.; Elgendy, S.; Patel, G.; Baban, J. A.; Skordalakes, E.; Husman, W.; Kakkar, V. V.; Deadman, J. *Tetrahedron* 1996, *52*, 10215–10224.
- (a) Palacios, F.; Choa de Retana, A. M.; Pogalday, J. Org. Prep. Proced. Int. 1995, 27, 625–635. (b) Palacios, F.; Choa de Retana, A. M.; Pogalday, J. Heterocycles 1995, 40, 543–550.
- (a) Hammerschemidt, F.; Hanbauer, M. J. Org. Chem. 2000, 65, 6121–6131. (b) Gajda, T.; Matusiak, M. Synth. Commun. 1992, 22, 2193–2203.
- Commonwealth Scientific and Industrial Research Organization and Imperial Chemical Industries of Australia and New Zealand Ltd. British Patent 1087066, 1967; *Chem. Abst.* 1968, 68, 95956.
- Khokhlov, P. S.; Osipov, V. N.; Kolesova, B. A. Zh. Obshch. Khim. 1990, 60, 1669–1670.

- 11. Hakiemelahi, G. H.; Just, G. Synth. Commun. 1980, 10, 429-435.
- (a) Andrews, L. J. Chem. Rev. 1954, 54, 713–776. (b) Weitz,
 E. Angew. Chem. 1954, 66, 658–677. (c) Orgel, L. E. Q. Rev. 1954, 8, 422–450.
- (a) Schonberg, A.; Ismail, A. F. A. J. Chem. Soc. 1940, 1374–1378. (b) Davies, W. C.; Walters, W. P. J. Chem. Soc. 1935, 1786–1792. (c) Ramirez, F.; Dershowitz, S. J. Am. Chem. Soc. 1956, 78, 5614–5622. (d) Ramirez, F.; Chen, E. H.; Dershowitz, S. J. Am. Chem. Soc. 1959, 81, 4338–4342. (e) Ramirez, F.; Dershowitz, S. J. Org. Chem. 1958, 23, 778–780.
- Iranpoor, N.; Firouzabadi, H.; Aghapour, Gh.; Vaezzadeh, A. R. *Tetrahedron* 2002, 58, 8689–8693.
- (a) Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Sardarian, A. R. *Tetrahedron Lett.* 2001, 42, 4369–4371. (b) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. *Tetrahedron Lett.* 2002, 43, 477–480. (c) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. *Tetrahedron Lett.* 2002, 43, 3653–3655. (d) Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Ghassamipour, S.; Amoozgar, Z. *Tetrahedron Lett.* 2003, 44, 891–893.
- Iorga, B.; Eymery, F.; Savignac, Ph. *Tetrahedron* 1999, 55, 2671–2686.
- Akihiro, Y.; Mitsuo, O. Nippon Kagaku Kaishi 1972, 11, 2103–2107.
- (a) Tsunoda, T.; Yamamiya, Y.; Ito, S. *Tetrahedron Lett.* **1993**, 34, 1639–1642. (b) Mitsunobu, O.; Yamada, M.; Mukaiyama, T. *Bull. Chem. Soc. Jpn* **1967**, 40, 935–939.

210